
The Soft Heap: An Approximate Priority Queue with
Optimal Error Rate

BERNARD CHAZELLE

Princeton University, Princeton, New Jersey, and NEC Research Institute

Abstract. A simple variant of a priority queue, called a soft heap, is introduced. The data structure
supports the usual operations: insert, delete, meld, and findmin. Its novelty is to beat the logarithmic
bound on the complexity of a heap in a comparison-based model. To break this information-theoretic
barrier, the entropy of the data structure is reduced by artificially raising the values of certain keys.
Given any mixed sequence of n operations, a soft heap with error rate « (for any 0 , « # 1/2) ensures
that, at any time, at most «n of its items have their keys raised. The amortized complexity of each
operation is constant, except for insert, which takes O(log 1/«) time. The soft heap is optimal for any
value of « in a comparison-based model. The data structure is purely pointer-based. No arrays are
used and no numeric assumptions are made on the keys. The main idea behind the soft heap is to
move items across the data structure not individually, as is customary, but in groups, in a
data-structuring equivalent of “car pooling.” Keys must be raised as a result, in order to preserve the
heap ordering of the data structure. The soft heap can be used to compute exact or approximate
medians and percentiles optimally. It is also useful for approximate sorting and for computing
minimum spanning trees of general graphs.

Categories and Subject Descriptors: E.1 [Data Structures]: Nonnumerical Algorithms and Problems

General Terms: Theory

Additional Key Words and Phrases: Amortization, heap, priority queue, soft heap

1. Introduction

We design a simple variant of a priority queue, called a soft heap. The data
structure stores items with keys from a totally ordered universe, and supports the
operations:

A preliminary version of this paper as CHAZELLE, B. 1998. Car-pooling as a data structuring device:
The soft heap. In Proceedings of the 6th Annual European Symposium on Algorithms, pp. 35– 42.
This work was supported in part by National Science Foundation (NSF) Grants CCR 93-01254 and
CCR 96-23768, ARO Grant DAAH04-96-1-0181, and NEC Research Institute.
Author’s address: Department of Computer Science, Princeton University, 35 Olden Street, Prince-
ton, NJ 08544-2087, e-mail: chazelle@cs.princeton.edu or NEC Research Institute, e-mail: chazelle@
research.nj.nec.com.
Permission to make digital / hard copy of part or all of this work for personal or classroom use is
granted without fee provided that the copies are not made or distributed for profit or commercial
advantage, the copyright notice, the title of the publication, and its date appear, and notice is given
that copying is by permission of the Association for Computing Machinery (ACM), Inc. To copy
otherwise, to republish, to post on servers, or to redistribute to lists, requires prior specific permission
and / or a fee.
© 2000 ACM 0004-5411/00/1100-1012 $05.00

Journal of the ACM, Vol. 47, No. 6, November 2000, pp. 1012–1027.

–create (6): Create an empty soft heap 6.
–insert (6, x): Add new item x to 6.
–meld (6, 69): Form a new soft heap with the items stored in 6 and 69 (assumed

to be disjoint), and destroy 6 and 69.
–delete (6, x): Remove item x from 6.
–findmin (6): Return an item in 6 with the smallest key.

The soft heap may, at any time, increase the value of certain keys. Such keys, and
by extension, the corresponding items, are called corrupted. Corruption is entirely
at the discretion of the data structure and the user has no control over it.
Naturally, findmin returns the minimum current key, which might or might not
be corrupted. The benefit is speed: during heap updates, items travel together in
packets in a form of “car pooling,” in order to save time.

From an information-theoretic point of view, corruption is a way to decrease
the entropy of the data stored in the data structure, and thus facilitate its
treatment. The entropy is defined as the logarithm, in base two, of the number of
distinct key assignments (i.e., entropy of the uniform distribution over key
assignments). To see the soundness of this idea, push it to its limit, and observe
that if every key was corrupted by raising its value to `, then the set of keys
would have zero entropy and we could trivially perform all operations in constant
time. Interestingly, soft heaps show that the entropy need not drop to zero for
the complexity to become constant.

THEOREM 1.1. Beginning with no prior data, consider a mixed sequence of
operations that includes n inserts. For any 0 , « # 1/2, a soft heap with error rate «
supports each operation in constant amortized time, except for insert, which takes
O(log 1/«) time. The data structure never contains more than «n corrupted items at
any given time. In a comparison-based model, these bounds are optimal.

Note that this does not mean that only «n items are corrupted in total
throughout the sequence of operations. Because of deletes many more items
might end up being corrupted. In fact, it is not difficult to imagine a scenario
where all items are eventually corrupted; for example, insert n items and then
keep deleting corrupted ones. Despite this apparent weakness, the soft heap is
optimal and—perhaps even more surprising— useful. The data structure can be
implemented on a pointer machine: no arrays are used, and no numeric
assumptions on the keys are required. Soft heaps capture three distinct features,
which it is useful to understand at the outset.

–If we set « 5 1/ 2n, then no corruption is allowed to take place and the soft
heap behaves like a regular heap with logarithmic insertion time. Unsurpris-
ingly, soft heaps include standard heaps as special cases. In fact, as we shall see,
a soft heap is nothing but a modified binomial queue [Vuillemin 1978].

–More interesting is the fact that soft heaps implicitly feature median-finding
technology. To see why, set « to be a small constant: insert n keys and then
perform n/ 2 findmins, each one followed by a delete. This takes O(n) time.
Among the keys deleted, the largest (original) one is «n away from the median
of the n original keys. To obtain such a number in linear time (deterministical-
ly), as we just did, typically requires a variant of the median-finding algorithm of
Blum et al. [1973].

1013The Soft Heap

–The previous remark should not lead one to think that a soft heap is simply a
dynamic median-finding data structure. Things are more subtle. Indeed, con-
sider a sequence of n inserts of keys in decreasing order, intermixed with n
findmins, and set « 5 1/2. Despite the high value of the error rate «, the
findmins must actually return the minimum key at least half the time. The
reason is that at most n/ 2 keys inserted can ever be corrupted. Because of the
decreasing order of the insertions, these uncorrupted keys must be reported by
findmin right after their insertion since they are minimum at the time. The
requirement to be correct half the time dooms any strategy based on maintain-
ing medians or near-medians for the purpose of findmin.

2. Applications

Soft heaps are useful for computing minimum spanning trees and percentiles, for
finding medians, for near sorting, and generally for situations where approximate
rank information is sought. Some examples below:

(1) The soft heap was designed with a specific application in mind, minimum
spanning trees. It is a key ingredient in what is currently the fastest
deterministic algorithm [Chazelle 2000] for computing the minimum span-
ning tree of a graph. Given a connected graph with n vertices and m
weighted edges, the algorithm finds a minimum spanning tree in time
O(ma(m, n)), where a is the classical functional inverse of Ackermann’s
function.

(2) Another, simpler application is the dynamic maintenance of percentiles.
Suppose we wish to maintain the grade point averages of students in a
college, so that at any time we can request the name of a student with a GPA
in the top percentile. Soft heaps support such operations in constant
amortized time.

(3) Soft heaps give an alternative method for computing medians in linear time
(or generally perform linear-time selection [Blum et al. 1973]). Suppose we
want to find the kth largest element in a set of n numbers. Insert the n
numbers into a soft heap with error rate 1/3. Next, call findmin and delete
about n/3 times. The largest number deleted has rank between n/3 and 2n/3.
After computing this rank, we can therefore remove at least n/3 numbers
from consideration. We recurse over the remainder in the obvious fashion.
This allows us to find the kth largest element in time proportional to n 1
2n/3 1 (2/3)2n 1 . . . 5 O(n).

(4) A fourth application of soft heaps is to approximate sorting. A weak version
of near-sorting requires that given n distinct numbers, the algorithm should
output them in a sequence whose number of inversions is at most «n2

(instead of zero for exact sorting). As it turns out, this follows directly from
inserting n numbers into a soft heap with error rate « and then deleting the
smallest keys repeatedly. The number Ik of inversions of the kth deleted
number x is the number of keys deleted earlier whose original values are
larger than x. But x must have been in a corrupted state during those
particular Ik earlier deletions. The total number of keys in a corrupted state,
counting over all deletions, is at most «n2, and so the number of inversions
(Ik is also bounded by «n2.

1014 BERNARD CHAZELLE

(5) A stronger version of near-sorting requires that in the output sequence the
rank of no number differs from its true rank in sorted order by more than
«n. We show below how soft heaps allow us to do that in O(n log 1/«) time.
In particular, this gives us a simple linear time algorithm for this strong form
of near-sorting with, say, 1% error in rank. Of course, the result itself is not
new. It can be derived trivially from repeated median computation. The
whole point is that we do it in a completely different way.

THEOREM 2.1. For any 0 , « # 1/2, we can use a soft heap to near-sort n
numbers in time O(n log 1/«): this means that the rank of any number in the output
sequence differs from its true rank by at most «n.

PROOF. Since the running time we seek to achieve is O(n log 1/«) we can
assume that n is large enough and that 1/« lies between a large constant and =n.
Given the n numbers (assumed to be distinct for simplicity) insert them into a
soft heap and then delete the item returned by findmin until the heap is empty.
Using a soft heap with error rate «, at most «n numbers are corrupted at any
given time. Divide the sequence of n pairs (findmin, delete) into time intervals
T1, . . . , Tl, each consisting of 2«n pairs; without loss of generality, we may
assume that n 5 2«nl. Let Si be the set of items deleted during Ti, and let Ui

be the subset of Si that includes only items that were at some point uncorrupted
during Ti. (We assume that items are time-stamped when first corrupted.)
Finally, let xi be the smallest original key among the items of Ui, and let si be the
corresponding item; for convenience, we put x0 5 2` and xl11 5 `. Given an
item s [Si whose original key lies in [xj, xj11), we define r(s) 5 ui 2 j u. Some
simple facts:

(1) uUiu $ 2«n 2 «n $ «n. Because at most «n items are corrupted at the
beginning of Ti.

(2) The xi’s appear in increasing order, and the original key of any item in Ui lies
in [xi, xi11): Since si11 is uncorrupted during Ti, its original key xi11 is at
least the current (and hence, the original) key of any item deleted during Ti.

(3) ({r(s) us [Si\Ui} , 2n. Given s [Si\Ui, let [xj, xj11) be the interval that
contains the original key of s. As we just observed, the original key of s is
less than xi11, and therefore, j # i. To avoid being selected by findmin, the
item s must have been in a corrupted state during the deletion of xk, for any
j , k , i (if any such k exists). The total number of items in a corrupted
state during the deletions of x1, . . . , xl is at most «nl, and therefore so is the
sum of distances i 2 j 2 1 5 r(s) 2 1 over all such items s. It follows that
(r(s) # «nl 1 n , 2n, hence our claim.

(4) The number of items whose original keys fall in [xi, xi11) is less than 6«n:
Indeed, suppose that the item does not belong to Si ø Si11. It cannot be
selected by findmin and deleted before the beginning of Ti, since si was not
corrupted yet. By the time si11 was deleted, the item in question must have
been corrupted (it cannot have been deleted yet). So, there can be at most
«n such items. Thus, the total number of items with original keys in [xi,
xi11) is at most 22«n 1 «n , 6«n.

Next, for each item s [Si\Ui, we search which interval [xj, xj11) contains its
original key, which we can do in O(r(s) 1 1) time by sequential search. By

1015The Soft Heap

(1)–(4), this means that in O(n) postprocessing time we have partitioned the set
of original keys into disjoint intervals, each containing between «n and 6«n keys.
So, in O(n log 1/«) time, any number can be output in a position at most 6«n off
its rank. Replacing « by «/6 completes the proof. e

3. The Data Structure

The data structure is simple but somewhat subtle. This makes it all the more
useful to include the actual code of our implementation of soft heaps in C. (It is
very short: about 100 lines!) The code should be viewed as a bonus, not a
hindrance. We do not base our discussion on it and, in fact, it is possible to skip
it in a first reading and still understand soft heaps.

Recall that a binomial tree [Vuillemin 1978] of rank k is a rooted tree of 2k

nodes: it is formed by the combination of two binomial trees of rank k 2 1,
where the root of one becomes the new child of the other root. A soft heap is a
sequence of modified binomial trees of distinct ranks, called soft queues. The
modifications come in two ways:

–A soft queue q is a binomial tree with subtrees possibly missing (somewhat like
the trees of a Fibonacci heap [Fredman and Tarjan 1987] after a few deletions).
The binomial tree from which q is derived is called its master tree. The rank of a
node of q is the number of children of the corresponding node in the master
tree. Obviously, it is an upper bound on the number of children in q. We
enforce the following rank invariant: the number of children of the root should
be no smaller than rank (root)/2.

–A node v may store several items, in fact, a whole item-list. The ckey of v
denotes the common value of all the current keys of the items in item-list(v): it
is an upper bound on the original keys. The soft queue is heap-ordered with
respect to ckeys, that is, a ckey of a node does not exceed the ckeys of any of its
children. We fix an integer parameter r 5 r(«), and we require that all
corrupted items be stored at nodes of rank greater than r. (See Figure 1.)

Turning to the actual C code, an item-list is a singly-linked list of items with
one field indicating the original value of the key.

typedef struct ILCELL

{ int key;

struct ILCELL *next;

} ilcell;

FIG. 1. Two soft queues of rank 2 combine to make one soft queue of rank 3. Although the edges
below 6 and 8 are missing, the rank of both nodes is one (not zero). The soft queue is heap-ordered
with respect to ckeys (indicated in parentheses), but not with respect to original keys.

1016 BERNARD CHAZELLE

A node of a soft queue indicates its ckey and its rank in the master tree.
Pointers next and child give access to the children. If there are none, the
pointers are NULL. Otherwise, the node is the parent of a soft queue of rank
one less (pointed to by child) and the root of a soft queue of rank one less
(pointed to by next). This is a standard artifice to represent high-degree nodes
as sequences of degree-2 nodes. Finally, a pointer il gives access to the head of
the item-list. To facilitate concatenation of item-lists, we also provide a pointer
il_tail to the tail of the list.

typedef struct NODE

{ int ckey, rank;

struct NODE *next, *child;,

struct ILCELL *il, *il_tail;

} node;

The top structure of the heap1 consists of a doubly-linked list h1, . . . , hm,
called the head-list: each head hi has two extra pointers: one (queue) points to
the root ri of a distinct queue, and another (suffix_min) points to the root of
minimum ckey among all rj’s (j $ i). We require that rank (r1) , . . . ,
rank(rm). By extension, the rank of a queue (respectively, heap) refers to the
rank of its root (respectively, rm). It is stored in the head hi as the integer
variable rank .

typedef struct HEAD

{ struct NODE *queue;

struct HEAD *next, *prev, *suffix_min;

int rank;

} head;

We initialize the soft heap by creating two dummy heads (global variables):
header gives access to the head-list while tail , of infinite rank, represents the
end of that list. The functions new_head and new_node create and initialize a
new head and a new node in the trivial manner. The third global variable is the
parameter r 5 r («).

head *header, *tail; int r;

header 5 new_head ¼; tail 5 new_head ¼;

tail 3rank 5 INFTY; header 3next 5 tail;

tail 3prev 5 header;

printf (“Enter r:”); scanf (“%d”, &r);

4. The Soft Heap Operations

We discuss a minor variant of the data structure, whose code is slightly simpler.
It is straightforward to modify the data structure into a full-fledged soft heap.

1 For brevity, we drop the “soft.”

1017The Soft Heap

First, our variant bypasses the create operation and integrates it within
insert . Also, note that the operation delete can be implemented in the lazy
style by simply marking the item to be deleted accordingly. Then, actual work is
required only when findmin returns an item that is marked as deleted. For this
reason, we skip the discussion of findmin and delete altogether, and instead,
focus on deletemin , the operation which finds an item of minimum key and
deletes it. Again, it is immediate to modify the data structure to accommodate
findmin and delete separately.

For each operation, we first give an informal description, sometimes using
pseudo-code, and then follow up with heavily annotated C code. Except for
drivers and I/O code, all that is needed to implement soft heaps is included here.

4.1. INSERTING AN ITEM. To insert a new item, we create an uncorrupted
one-node queue, and we meld it into the heap.

C CODE FOR INSERT

insert (newkey)

int newkey;

{ node *q; ilcell *l;

l 5 (ilcell *) malloc (sizeof (ilcell));

l 3key 5 newkey; l 3next 5 NULL;

q 5 new_mode ¼; q 3rank 5 0; q 3ckey 5 newkey;

q3il 5 l; q 3il_tail 5 l;

meld (q);

}

4.2. MELDING TWO HEAPS. Consider melding two heaps 6 and 69. We begin
with a quick overview, and then we discuss the actual implementation of the
operation. We break apart the heap of lesser rank, say 69, by melding each of its
queues into 6. To meld a queue of rank k into 6, we look for the smallest index
i such that rank(ri) $ k. (The dummy head tail ensures that i always exists.) If
rank (ri) . k, we insert the head right before hi, instead. Otherwise, we meld
the two queues into one of rank k 1 1, by making the root with the larger key a
new child of the other root. If rank (ri11) 5 k 1 1, a new conflict arises. We
repeat the process as long as necessary like a carry propagation in binary
addition. Finally, we update the suffix_min pointers between h1 and the last
head visited. When melding not a single queue but a whole heap, the last step
can be done at the very end in just one pass through 6. We give the code for
melding a soft queue into a soft heap.

C CODE FOR MELD

Let q be a pointer (node *q) to the soft queue to be melded into the soft
heap. First, we scan the head-list until we reach the point at which melding

1018 BERNARD CHAZELLE

proper can begin. This leads us to the first head of rank at least that of q, which
is denoted by tohead . To facilitate the insertion of the new queue, we also
remember the preceding head, called prevhead .

meld (q)
node *q;
{ head *h, *prevhead, *tohead 5 header 3next;

node *top, *bottom;
while (q 3rank . tohead 3rank) tohead 5 tohead 3next;
prevhead 5 tohead 3prev;

If there is already a queue of the same rank as q, we perform the carry
propagation, as discussed earlier. When merging two queues, we use the
variables top and bottom to specify which of the two queues end up at/below
the root. We create a new node q pointing to top and bottom . Its item-list is
inherited from top , and its rank is one plus that of top, (i.e., top 3rank 11).
Finally, we update tohead to point to the next element down the head-list.

while (q 3rank 55 tohead 3rank)
{ if (tohead 3queue3ckey . q3ckey)

{top 5 q; bottom 5 tohead 3queue; }
else

{top 5 tohead 3queue; bottom 5 q;}
q 5 new_mode ¼;
q3ckey 5 top 3ckey; q 3rank 5 top 3rank 11;
q3child 5 bottom; q 3next 5 top;
q3il 5 top 3il; q 3il_tail 5 top 3il_tail;
tohead 5 tohead 3next;

} /* end of while loop */

We are now ready to insert the new queue in the list of heads. We use a little
trick: if a carry has actually taken place, then the head pointed to by
prevhead 3next is now unused and so can be recycled as the head of the new
queue. (We omit the garbage collection one might want to carry out to free the
newly available space.) Otherwise, we create a new head h. We insert h between
prevhead and tohead ; all the heads inbetween can be discarded. Finally, we
call fix_minlist(h) to restore the suffix_min pointers.

if (prevhead 55 tohead 3prev) h 5 new_head ¼;
else h 5 prevhead 3next;
h3queue 5 q; h 3rank 5 q3rank;
h3prev 5 prevhead; h 3next 5 tohead;
prevhead 3next 5 h; tohead 3prev 5h;
fix_minlist (h);

}

C CODE FOR FIX_MINLIST

1019The Soft Heap

Prior to calling fix_minlist(h) , it is assumed that all suffix_min point-
ers are correct except for those between header and h. A simple walk from h
back to header updates all the suffix_mins .

fix_minlist (h)
head *h;
{ head *tmpmin;

if (h 3next 55 tail) tmpmin 5 h;
else tmpmin 5 h3next 3suffix_min;
while (h ! 5 header)

{if (h 3queue3ckey , tmpmin 3queue3ckey)
tmpmin 5 h;

h3suffix_min 5 tmpmin;
h 5 h3prev;

}
}

4.3. DELETEMIN. The suffix_min pointer at the beginning of the head-list
points to the head h with the minimum ckey (corrupted or not). The trouble is
that the item-list at that node might be empty. In that case, we must refill the
item-list with items taken lower down in the queue pointed to by h. To do that,
we call the function sift(h 3queue, h 3rank) , which replaces the empty
item-list by another one. If necessary, we iterate on this process until the new
item-list at the root is not empty. The function sift is the heart of the soft heap
so, without further ado, let us turn our discussion to it.

Taking as argument the node v at which the sifting takes place, the function
sift attempts to move items up the tree towards the root. This is a standard
operation in classical heaps. Typically, there is single recursive call in the
procedure and the computation tree is a path. The twist is to call the recursion
twice once in a while, in order to make the recursion tree branching, that is, truly
a tree. This simple modification causes item-lists to collide on the way up, which
we resolve by concatenating them. First, some pseudo-code:

sift(v)
item-list(v) 4 T 4 À;
if v has no child
then set ckey(v) to ` and return;

1. sift(v 3next);
if ckey(v 3next) .ckey(v 3child)

then exchange v3next and v3child;
T 4 Tø item-list(v 3next);
if loop-condition holds then goto 1;
item-list(v) 4 T.

The “loop-condition” statement is what makes soft heaps special. Without it,
sift would be indistinguishable from the standard deletemin operation of a
binomial tree. The loop-condition holds if (i) the goto has not yet been executed
during this invocation of sift (i.e., branching is at most binary), (ii) the rank of
v exceeds the threshold r and either it is odd or it exceeds the rank of the highest
ranked child of v by at least two. The rank condition ensures that no corruption
takes places too low in the queue; the parity condition is there to keep branching

1020 BERNARD CHAZELLE

from occurring too often; finally the last condition ensures that branching does
occur frequently enough. The variable T implements the car-pooling in the
concatenation T 4 Tø item-list (v 3next) . The cleanup is intended to prune
the tree of nodes that have lost their item-lists to ancestors and whose ckeys
have been set to `.

C CODE FOR SIFT

The item-list at v is worthless and it is effectively emptied at the beginning. We
test whether the node v is a leaf. If so, we bottom out by setting its ckey to
infinity (i.e., a large integer), which will cause the node to stay at the bottom of
the queue. If v is not a leaf then neither v3next nor v3child is NULL. In
fact, this is a general invariant: both are null or neither one is. This might change
temporarily within a call to sift but it is restored before the call ends.

node *sift (v)
node *v;
{ node *tmp;

v3il 5 NULL; v3il_tail 5 NULL;
if (v 3next 55 NULL && v3child 55 NULL)

{ v 3ckey 5 INFTY; return v; }
v3next 5 sift (v 3next);

The new item-list at v3next might now have a large ckey which violates the
heap ordering. If so, we perform a rotation by exchanging children v3next and
v3child .

if (v 3next 3ckey . v3child 3ckey)
{ tmp 5 v3child;

v3child 5 v3next;
v3next 5 tmp;

}

Once the children of v are in place we update the various pointers at v . In
particular, the item-list of v3next is passed on to v , and so is its ckey . Recall
that while v3child is truly a child of v in the soft queue, the node v3next is
a child of v only in the binary-tree implementation of the queue.

v3il 5 v3next 3il;
v3il_tail 5 v3next 3il_tail;
v3ckey 5 v3next 3ckey;

Next in line, the most distinctive feature of soft heaps: the possibility of sifting
twice, that is, of creating a branching process in the recursion tree for sift . If
the loop-condition is satisfied, meaning that the rank of v is odd and large
enough, we sift again.

if(v 3rank . r &&
(v 3rank % 2 55 1 i v3child 3rank , v3rank-1))

} v 3next 5 sift (v 3next);

1021The Soft Heap

As a result of the sifting, another rotation might be needed to restore heap
ordering.

if (v 3next 3ckey . v3child 3ckey)
{ tmp 5 v3child;

v3child 5 v3next;
v3next 5 tmp;

}

The item-list at v3next should now be concatenated with the one at v , unless
of course, it is empty or no longer defined. The latter case occurs when ckey is
infinite at both v3child and v3next . Note that this could not happen after
the previous sift.

if (v 3next 3ckey ! 5 INFTY && v3next 3il ! 5 NULL)
{v 3next 3il_tail 3next 5 v3il;

v3il 5 v3next 3il;
if (v 3il_tail 55 NULL)

v3il_tail 5 v3next 3il_tail;
v3ckey 5 v3next 3ckey;

}
} /* end of second sift */

We clean up the queue by removing the nodes with infinite ckeys . We do not
update v3rank since rank is defined with respect to the master tree. Note that
this is where the rank and the number of children can be made to differ. In fact,
we ensure that for any node v the ranks of its children (in the binary tree) are
always equal, that is, v3next 3rank 5 v3child 3rank .

if (v 3child 3ckey 55 INFTY)
{ if(v 3next 3ckey 55 INFTY)

{ v 3child 5 NULL; v3next 5 NULL; }
else

{ v3child 5 v3next 3child;
v3next 5 v3next 3next; }

}
return v;

}

C CODE FOR DELETEMIN

The function deletemin returns the item with the smallest ckey and deletes
it. In practice, safe programming would dictate that we add safety code to warn
the user against deleting from an empty heap and things of the sort. We dispense
with such niceties here. The first suffix_min pointer takes us to the smallest
ckey , which is what we want unless, of course, the corresponding item-list is
empty. In that case, we call sift —perhaps more than once—to bring items back
to the root. But first, we check whether the rank invariant is violated. Indeed,
previous sifting might have caused the loss of too many children of the root and
hence a violation of the invariant. We count the children of the root. (Alterna-
tively, we could add a field to keep track of this number.)

1022 BERNARD CHAZELLE

deletemin ¼
{ node *sift ¼, *tmp;

int min, childcount; head *h 5 header 3next 3suffix_min;
while (h 3queue3il 55 NULL)

{ tmp 5 h3queue; childcount 5 0;
while (tmp 3next ! 5 NULL)

{ tmp 5 tmp3next; childcount 11; }

The advantage in detecting a rank invariant violation so late in the game is that
to fix it is much easier since the root’s item-list is empty (else, what would we do
with it?) If the rank invariant is violated (i.e., childcount , h3rank /2), we
remove the queue and update the head-list and suffix_min pointers. Then, we
dismantle the root by remelding back its children.

if (childcount , h3rank/2)
{ h 3prev 3next 5 h3next;

h3next 3prev 5 h3prev;
fix_minlist (h 3prev);
tmp 5 h3queue;
while (tmp 3next ! 5 NULL)

{ meld (tmp 3child); tmp 5 tmp3next; }
}

If the rank invariant holds, we are ready to refill the item-list at the root by
calling sift.

else
{ h 3queue 5 sift (h 3queue);

if (h 3queue3ckey 55 INFTY)
{ h 3prev 3next 5 h3next;

h3next 3prev 5 h3prev; h 5 h3prev; }
fix_minlist (h);

}
h 5 header 3next 3suffix_min;

} /* end of outer while loop */

We are now in a position to delete the minimum-key item.

min 5 h3queue3il 3key;
h3queue3il 5 h3queue3il-next;
if (h 3queue3il 55 NULL) h3queue3il_tail 5 NULL;
return min;

}

5. Complexity Analysis

We prove that the soft heap meets all its claims via a few simple lemmas. We
consider a mixed sequence of operations including n inserts. To begin with, we
must explain the correspondence between a soft queue and its master tree. When
no deletion takes place the equivalence is obvious, and it is trivially preserved
through inserts and melds. During sifting, the key observation is that v 3 next
3 rank and v 3 child 3 rank always remain identical. To enforce this

1023The Soft Heap

equality is what can cause a discrepancy between rank and number of children.
But it allows us to think of a rotation as an exchange between soft queues of the
same rank (albeit with perhaps missing subtrees). The corresponding master
trees having the same rank, they are isomorphic and therefore a rotation has no
effect in the correspondence. Similarly, the cleanup prunes away subtrees, with
no consequence on the queue/master-tree correspondence.

The interesting aspect of this correspondence is that the leaves of the master
tree that are missing from the soft queue correspond to items which have
migrated upward to join item-lists of nodes of positive rank. Such items can
never again appear in leaves of any soft queue. Note that dismantling a node by
remelding its children does not contradict this statement since it merely recon-
figures the soft heap.

5.1. THE ERROR RATE. To achieve the desired error rate, we set

r 5
def

2 1 2 log
1

« .

LEMMA 5.1

uitem-list ~v! u # max$1, 2 rank(v)/ 22r/ 2% .

PROOF. Until the first call to sift , all item-lists have size one, and the
inequality holds. Afterwards, simple inspection shows that all operations have
either no effect on the lemma’s inequality or sometimes a favorable one (e.g.,
meld). All of them, that is, except for sift , which could potentially cause a
violation. We show that this is not the case, and prove the lemma’s inequality by
induction. If sift(v) calls itself recursively, via sift(v 3next) , only once,
meaning that the loop-condition is not satisfied, then the item-list of v 3 next
(after possible rotation) migrates to a higher-ranking node by itself and the
lemma holds by induction. Otherwise, the item-list at v becomes the union of the
two item-lists associated with v 3 next after each call to sift(v 3 next) .
For this to happen, v 3 rank must exceed r and one of two conditions must
hold: either v3rank is odd or it exceeds v3child 3 rank 11. In the first case,
after either recursive call, the rank of v3next is strictly less than v3rank , and
by induction the size of either one of the item-lists of v3next is at most

max{1, 2(rank(v)21)/ 22r/ 2} 5 2(rank(v)21)/ 22r/ 2 5 2rank(v)/ 2212r/ 2.

Note that the max disappears because rank(v) . r. In the other case, the size of
either one of the item-lists of v3next is at most

max{1, 2(rank(v)22)/ 22r/ 2} 5 2rank(v)/ 2212r/ 2.

This time, the max disappears because r and the rank of v are both even, and so
rank (v) $ r 1 2. In sum, the size of the union is at most 2 3 2rank(v)/ 2212r/ 2,
which proves the lemma. e

LEMMA 5.2. The soft heap contains at most n/2r23 corrupted items at any given
time.

PROOF. We begin with a simple observation. If S is the node set of a binomial
tree, then

1024 BERNARD CHAZELLE

O
v[S

2rank~v!/ 2 # 4 uS u. (1)

This follows from the inequality

O
v[S

2rank~v!/ 2 # 2k12 2 3 z 2k/ 2,

where k is the rank of the binomial tree. A proof by induction is immediate and
can be omitted. Recall that the ranks of the nodes of a queue q are derived from
the corresponding nodes in its master tree q9. So, the set R (respectively, R9) of
nodes of rank greater than r in q (respectively, q9) is such that uR u # uR9 u.
Within q9, the nodes of R9 number a fraction at most 1/ 2 r of all the leaves.
Summing over all master trees, we find that

O
q9

uR9 u #
n

2 r
. (2)

There is no corrupted item at any rank # r, and so by Lemma 5.1 their total
number does not exceed

O
q9

O
v[R9

2(rank~v! 1 1 2 r)/ 2 5 2 O
q9

O
v[R9

2(rank~v! 2 r 2 1)/ 2. (3)

Each R9 forms a binomial tree by itself, where the rank of node v becomes
rank(v) 2 r 2 1. So, by (1, 2), the sum in (3) is at most (q9 8 uR9 u # n/ 2r23. e

5.2. THE RUNNING TIME. Only meld and sift need to be looked at, all
other operations being trivially constant-time. Assigning one credit per queue
takes care of the carry propagation during a meld . Indeed, two queues of the
same rank combine into one, which releases one credit to pay for the work.
Updating suffix-min pointers can take time, however. Specifically, carries aside,
the cost of melding two soft heaps 6 and 69 is at most the smaller rank of the
two (up to a constant factor). The entire sequence of soft heap melds can be
modeled as a binary tree }. A leaf z denotes a one-item heap (its cost is 1). An
internal node z indicates the melding of two heaps. Since heaps can grow only
through melds, the added size of the master trees in the soft heap at z is
proportional to the number N(z) of descendants in }. The cost of node z (i.e.,
of the meld) is 1 1 log min{N(x), N(y)}, where x and y are the left and right
children of z.2 A simple recurrence (see e.g., Hoffman et al. [1986]) shows that
adding together all these costs gives a total melding cost linear in the size of },
that is, O(n).

For this analysis to be correct, no node dismantling should ever take place. We
can easily amend it, however, to cover the general case. For the purpose of the
analysis, let us not regard the remeldings caused by dismantling as heap melds
but as queue melds. The benefit is to leave the tree } unchanged. The
dismantle-induced melds associated with a node z of } reconfigure the soft heap

2 We use the fact that the rank of a soft queue is exactly the logarithm of the number of nodes in its
master tree.

1025The Soft Heap

at z by removing some of its nodes and restoring the rank invariant. This can only
decrease the value of N(z), so the previous analysis remains correct.

Of course, the queue melds associated with node x must now be accounted for.
Dismantling node v causes no more than rank(v) queue melds. By the violation
of the rank invariant, the node v has at least one missing child of rank $

rank(v)/ 2. In the master tree, there are at least 2rank(v)/ 221 leaves at or below
that child, and all have disappeared from the soft queue. So, we can charge the
dismantle-induced melds against these leaves, and conclude that melding takes
O(n) time.

Finally, we show that the cost of all calls to sift is O(rn). Consider any
decreasing sequence of integers. An integer m is called good if it is odd or if its
successor is less than m 2 1. Clearly, any subsequence of size two contains at
least one good integer. Now, consider the computation tree corresponding to an
execution of sift(v) . By examining the sequence of ranks along any root-to-
leaf path, our previous observation leads us to conclude that along any path of
size at least r, at least one branching must occur (not necessarily many more than
that because no branching occurs at rank r and below). It follows that, excluding
the updating of suffix-min pointers, the running time is O(rC), where C is the
number of times the loop-condition succeeds.

It is easy to see, by induction, that if v is the root of a subtree with fewer than
two finite ckeys in the subtree below, the computation tree of sift(v) is of
constant size. Conversely, if the subtree contains at least two finite ckeys at
distinct nodes, then if the loop-condition is satisfied at v, both calls of the form
sift(v 3next) bring finite ckeys to the root and two nonempty item-lists are
thus concatenated. There can be at most n 2 1 such merges, therefore C # n
and our claim holds.

We ignored the cost of updating suffix_min pointers after each call to
sift . Maintaining the rank invariant makes the cost of suffix_min updating
negligible. Indeed, each update takes time proportional to the rank of the queue:
(i) if the rank invariant holds, then the updating time is dominated by the cost of
sift itself (already accounted for); (ii) otherwise, the root v is dismantled,
which, as we just saw, releases 2rank(v)/ 221 leaves against which we can charge
the updating cost. By Lemma 5.2, the total number of corrupted items is
bounded by n/ 2 r23. Setting r 5 2 1 2log(1/«) proves Theorem 1.1 (except for
the optimality claim). e

Remark. The storage is linear in the number of insertions n, but not
necessarily in the actual number of items present. If storage is at a premium,
here is a simple fix: as soon as the number of live items falls below, say, n/ 2, we
reconfigure the soft heap entirely. We reinsert all the uncorrupted items and,
separately, we string together the corrupted ones into a single item-list whose
common key is set to infinity. The time for reconfiguring the heap can be
charged to the n/ 2 deleted elements. Regarding corruption, the reconfiguration
merely doubles the number of insertions, and so the number of corrupted items
after I (user-requested) insertions will be at most 2«I. So, it suffices to replace «

by «/2 to achieve an error rate of «. This modified soft heap is optimal in storage,
and as shown below, in time.

1026 BERNARD CHAZELLE

6. Optimality

To complete the proof of Theorem 1.1, we show that the soft heap is optimal.
Without loss of generality, we can assume that 1/« lies between a large constant
and =n and that n/«n is an integer l. Apply Theorem 2.1 to n distinct numbers
and pick out every 2«n-th element in the output sequence. By the near-
sortedness of the output, the chosen subsequence is already sorted. It partitions
the set of numbers into disjoint intervals, within which we can easily locate the
other numbers in linear time (each element being at most a constant number of
intervals off its enclosing interval). From this, in particular, we derive the true
rank of the selected numbers. By using linear selection-finding within each
interval, we easily, in O(n) time, retrieve the k«n-th largest number, for k 5
1, 2, . . . , l. We have partitioned the set of n numbers into disjoint intervals of
size «n. Let n1 5 . . . 5 nl 5 «n. A standard counting argument shows that
any comparison-based tree for performing this computation is of height at least

logS n
n1 , . . . , nl

D 5 V~n log 1/«! .

So, the entire algorithm requires V(n log 1/«) time, but it involves O(n)
operations on a soft heap with error rate «, followed by O(n)-time postprocess-
ing. It follows that the O(log 1/«) amortized complexity of the soft heap is
optimal. e

ACKNOWLEDGMENTS. I wish to thank the anonymous referee for some useful
suggestions.

REFERENCES

BLUM, M., FLOYD, R. W., PRATT, V., RIVEST, R. L., AND TARJAN, R. E. 1973. Time bounds for
selection. J. Comput. Syst. Sci. 7, 448 – 461.

CHAZELLE, B. 2000. A minimum spanning tree algorithm with inverse-Ackermann type complexity.
J. ACM 47, 6 (Nov.), 000 – 000.

FREDMAN, M. L., AND TARJAN, R. E. 1987. Fibonacci heaps and their uses in improved network
optimization algorithms. J. ACM 34, 596 – 615.

HOFFMAN, K., MEHLHORN, K., ROSENSTIEHL, P., AND TARJAN, R. E. 1986. Sorting Jordan se-
quences in linear time using level-linked search trees. Inf. Cont. 68, 170 –184.

VUILLEMIN, J. 1978. A data structure for manipulating priority queues. Commun. ACM 21,
309 –315.

RECEIVED FEBRUARY 1998; REVISED JUNE 1999; ACCEPTED MARCH 2000

Journal of the ACM, Vol. 47, No. 6, November 2000.

1027The Soft Heap

